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Abstract—The Industrial IoT scenario represents an interesting
opportunity for distributed measurements systems, that are
typically based on efficient and reliable communication systems,
as well as the widespread availability of data from measurement
instruments and/or sensors. The Open Platform Communications
(OPC) Unified Architecture (UA) protocol is designed to ensure
interoperability between heterogeneous sensors and acquisition
systems, given its object–oriented structure allowing a complete
contextualization of the information. Stemming from the intrinsic
complexity of OPC UA, we designed an experimental measure-
ment setup to carry out a meaningful performance assessment of
its main open source implementations. The aim is to characterize
the impact of the adoption of this protocol stack in a DMS in
terms of both latency and power consumption, and to provide a
general yet accurate and reproducible measurement setup.

Index Terms—Industrial Internet of Things, Performance eval-
uation, OPC UA, Distributed Measurement Applications

I. Introduction

In the last few years, the industrial world embraced the
Industry 4.0 paradigm [1], which merges technologies with
products, systems, and services, having its own intrinsic net-
worked structures, in order to realize the Industrial Internet
of Things (IIoT) [2], [3], to improve productivity, efficiency,
reliability, safety, and security.
Basically, IIoT is a network of networks that connects

industrial devices, equipment, sensors and actuators to provide
high level services in several fields of applications. Indeed,
with IIoT, heterogeneous data collected from different sources
can be analyzed to better understand and drive the overall
production in a fully automatic way, possibly adopting Ma-
chine Learning and Data Mining approaches [4]. Furthermore,
thanks to the widespread connectivity, data can be effectively
assessed from anywhere by several types of devices, such
as Tablet PCs, Smartphones and Personal Computers. This
implies the seamless connection of such devices, with the
consequent adoption of several networks and protocols.
IIoT represents an interesting opportunity also for dis-

tributed measurements systems (DMS) [5]. Indeed, DMS

are typically based on efficient and reliable communication
systems [6], [7], as well as the widespread availability of data
from measurement instruments and/or sensors.

Within the IIoT–enabled DMS scenario, a protocol of in-
terest is represented by the Open Platform Communications
(OPC) Unified Architecture (UA) [8]. OPC UA is an IEC
standard protocol [9] designed to ensure interoperability be-
tween different equipments, effectively employed to implement
Machine–to–Machine (M2M) communication. A typical ap-
plication of OPC UA is found in factory automation systems
where it enables to accomplish interoperable communication
between PLCs and SCADA systems, allowing to ensure effec-
tive plant monitoring and control, also ensuring a high level
of data protection against attacks and threats.

Analogously, OPC UA represents an appealing opportu-
nity for distributed measurement systems as well. Indeed, its
object–oriented structure allows a complete contextualization
of the information. For example, an object could be used to
store the value of a measurement, the features of the instru-
ment/device that produced it, the measurement unit, possible
thresholds and so on. These are important characteristics that
allow to reduce ambiguities when the DMS has to deal with
multiple and heterogeneous types of data.

Nonetheless, the complexity of the OPC UA protocol may
have a negative impact on the performance and its evalua-
tion, particularly in terms of response times. The issue that
possibly introduced (and undesired) delays might compromise
the behavior of distributed measurement systems has already
been analyzed in the literature [10]–[13]. Nevertheless, this
aspect may assume further relevance when devices with low
computation capabilities and low costs are used, as it is often
the case of field equipment like instruments and sensors.

Motivated by the above considerations, we designed an
experimental measurement setup to carry out a meaningful
performance assessment of the three main open source imple-
mentations of the OPC UA protocol stack, namely Open62541,
FreeOPC UA C++ and FreeOPC UA Python. With the aim



of providing a meaningful and fair assessment, we exploited
the widespread commercially available Raspberry Pi Model
3B boards, equipped with the Raspbian Operating System. A
preliminary version of this measurement setup has already
been discussed in [12]. In this work we introduce several
improvements with respect to that analysis, and in particular:
(i) we considered two different operating system configurations
and the CPU isolation feature, (ii) we provide a more com-
prehensive analysis about the CPU usage statistics and (iii)
take into account also power consumptions, and finally (iv)
we corrected several implementation bugs and (v) improved
the optimizations of the compiler, to provide more meaningful
results. In the following, we first describe the measurement
set–up, which has been designed to be independent from the
specific protocol stack and hence of general usage, and then
provide the results of an extensive measurement campaign
aimed at evaluating the transmission times as well as the power
consumption of the three different implementations.

II. Brief Introduction to OPC UA
OPC UA is based on the Client–Server model, where the

server is the source of information which is structured as
objects, formally referred to as “Nodes”. The Server provides a
Client with a set of Services, for example, read, write, browse,
etc., which can be used to access the information stored on the
server itself. The set of nodes made available by an OPC UA
server is referred to as the address space [14].
The OPC UA model defines nodes in term of variables,

methods and events. A Node is, hence, the fundamental entity
of OPC UA and it represents a basic object which has only
the attributes necessary to define any kind of information item
(e.g. ID, name, etc.).
In a distributed measurement system that relies on the OPC

UA protocol, measurements can be stored on nodes that belong
to one or more servers, so that they can be accessed by
the distributed clients. An illustrative sketch representing the
described scenario is reported in Figure 1. As can be seen,
measurements stored in different devices, and structured within
diverse OPC UA servers, are remotely accessed by an OPC UA
client which provides for their visualization.

III. Experimental Set-up
As already described in the Introduction, this manuscript

proposes an experimental measurement setup, designed to
allow the performance assessment of a given implementations
of the OPC UA protocol stack. The main purpose of this exper-
imental activity is to provide a figure about the performance
of such implementation mainly in terms of latency and power
consumption, when deployed within a lightweight embedded
system similar to those adopted for intelligent IoT sensors.The
design of the setup has been conceived to be as much general
as possible, in order to avoid a strict dependence of particular
software implementations as well as to enable the setup to be
reused or reproduced in different scenarios.
All the experiments have been carried out on Raspberry Pi

Model 3B+ boards. These have been equipped, alternatively
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Fig. 1. Example of use of OPC UA in a Distributed Measurement System
based on the IIoT Paradigm

on the basis of the measurement session, with two different
operating system versions. The first one is represented by the
default Raspbian OS (Kernel version 4.14.79). The second
one is instead represented by a real-time version of the
Rasbian OS (Kernel version 4.14.74–rt44). The latter one has
been obtained starting from the default kernel version by the
introduction of the RT_PREEMPT patch set, which enables a
real–time behavior of the system allowing non critical part
of the kernel to be preempted in favor of the execution of
userspace applications.

Furthermore, as it will be better detailed in the next Section,
we exploited a significant feature offered by the Linux operat-
ing system, that is, to isolate a group of CPU cores in which a
process can be run. Indeed, the isolcpus boot parameter in
combination with the taskset command, allows to isolate one
or more cores from the kernel scheduling and to reserve them
for the execution of userspace applications without interference
from the OS.

In this way, we have been able to carry out experiments
exploiting four different configurations, that is, experiments
with or without real-time extensions, and experiments where
the OPC UA processes were alternatively managed either by
the kernel scheduler or allocated to the isolated core. As
a further mean to minimize the external factors that may
affect the accuracy of the measurements, the CPU governor
(i.e. a kernel–level component responsible of scaling the CPU
frequency based on the workload) has been disabled and the
CPU frequency has been set to its maximum operable value
of 1.4 GHz.

The open-source implementations of OPC UA considered in
the following experiments are reported below, along with the
indication of the adopted programming language (PL). In order
to ensure reproducibility of the experiments, we also provide
the commit hash of the sources (all the implementations are
available through the popular Github platform) at the time the
experiments have been performed:



• open62541 — PL: common subsets of the C99 and
C++98. Commit hash: 9f0c73d

• FreeOPC UA C++ — PL: C++11. Commit hash:
da2b76f

• FreeOPC UA Python — PL: Python. Commit hash:
83fb9ea

All the aforementioned protocol stack work natively on the
Raspberry PI boards, and consequently their setup procedure
has not involved any further software adaptation. Nevertheless,
they are conceptually different, so that their behaviors on the
selected hardware device may provide useful insights for future
developments. Particularly, two out of three implementations
are implemented by means of compiled languages (C/C++),
whereas the other one is implemented in Python, which is
a high level interpreted language. Since the outcomes of
the experiments also depends on the adopted development
environment, for reproducibility purposes we also resume the
most relevant technical details:

• Python version 3.5.3;
• glibc 2.23;
• gcc version 6.3.0;
• gcc optimization option: -O3 -s.

IV. Measurements Analysis
The objective of the measurements is to identify the achiev-

able performance figures of different OPC UA implementa-
tions in terms of time and energy consumption, both param-
eters being meaningful for DMS deployment. To this regard,
we developed a test communication task with which an integer
variable stored in the OPC UA Server is read by the OPC UA
Client. In this task, the server implements two separate threads
as represented in Figure 2. Thread A simulates the acquisition
of a new measurement (i.e. a physical quantity) every second,
by increasing an integer variable. Thread B is instead devised
to manage the whole OPC UA server. The measurement
outcome, stored in an OPC UA object, is saved in a memory
area common to both threads so that the server can access it.
In order to acquire the variable, the client sends a read request
to the server, which answers consequently in agreement with
the OPC UA protocol rules. The time necessary to perform
the whole procedure is defined as service time, Ts , which is
obtained as the interval which elapses between the time in
which the request is generated by the client (Treq) and that in
which it actually receives the variable (Tres), i.e.

Ts = Tres − Treq (1)

It is worth noticing that the time Ts is measured by acquiring
the content of the internal CPU register “Cycle Counter
Register” which is implemented within ARM processors. It
performs as a counter of the processor clock cycles, hence
allowing to directly obtain the elapsed time. Accessing the
register requires only one CPU Cycle, so that its impact
on the evaluation of the service time time Ts is negligible.
Resuming, for each OPC UA implementation four experiments
have been carried out, using both operating systems and with
different CPU configurations (isolated/not isolated). For each
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Fig. 2. Software architecture of the communication task

TABLE I
Statistics of the CPU Usage

CPU Usage

Mean In Kernel
Space

In User
Space

Open62541 17.2% 60.89% 39.11%
FreeOPC UA C++ 26.1% 50.63% 49.37%
FreeOPC UA Python 51.2% – –

experiment, N = 100.000 measurements of the service time
have been collected and analyzed.

A. CPU Usage
A first set of outcomes is resumed in Table I, which shows

the statistics about the CPU usage for the three considered
implementations. In particular, it can be seen that Open62541
is the most efficient from the average resources utilization
point of view, followed by FreeOPC UA C++ and FreeOPC
UA Python. Actually, the latter highlighted an almost doubled
utilization value compared to the others, although this should
be not much surprising given it is based on an interpreted
language, being certainly less efficient. Nevertheless, it is
interesting to note that in the case of the implementation based
on Open62541 the subdivision of the used resources of the
CPU is slightly unbalanced towards the Kernel Space, while
in FreeOPC UA C++ we have a subdivision almost at 50%.
Unfortunately, a comparison with the last implementation is
not possible, because the tool with which the analysis was
performed does not support measurements of the stack of
interpreted languages.

TABLE II
CPU usage during the communication task

context
switches

CPU
migrations

CPU
cycles

Open62541 100 · 103 1 7.7 · 109

FreeOPC UA C++ 200 · 103 0 13 · 109

FreeOPC UA Python 283 · 103 29 533 · 109

A second set of outcomes is relevant to general data
concerning the use of the CPU during the communication
task, as reported in Table II. In particular, the table reports the



280 300 320 340 360 380
0

5

10
·10−2

Ts [µs]

Em
pi

ric
al

PD
F Without cpu isolation

With cpu isolation

(a) open62541

340 350 360 370 380 390 400 410 420
0

10

20

·10−2

Ts [µs]

Em
pi

ric
al

PD
F

(b) FreeOPC UA C++

700 710 720 730 740 750 760 770 780 790
0

5

10
·10−2

Ts [µs]

Em
pi

ric
al

PD
F

(c) FreeOPC UA Python

Fig. 3. EPDF of the service time for the configuration with the generic OS.
Blue line: configuration without CPU isolation. Red line: configuration with
CPU isolation enabled, where both server and client are forced to run on the
isolated CPU.

number of context switches, CPU migrations and total number
of CPU cycles to complete the exchange of 100.000 variables.
These parameters are common indices exploited to determine
the efficiency of a program, where high values indicate poor
optimization and therefore long execution times. The outcomes
actually confirm the previous observations, and also in this
case it is worth noting how the compiled versions show similar
values, while the Python based version has much higher values
regarding in particular the number of CPU cycles and CPU
migrations.

B. Generic OS
The first set of experiments was carried out using the setup

with the generic operating system with both cpu isolation en-
abled and disabled. The empirical probability density function
(EPDF) of the service time and the most relevant statistics
of the experiments are reported in Figure 3 and Table III,
respectively.
The obtained outcomes show that both the compiled im-

plementations, Open62541 and FreeOPC UA C++, are char-
acterized by rather similar average values of the service time.
Conversely, the average Ts results much higher (about doubled)
for the FreeOPC UA Python implementation, as it could be

expected since Python is an interpreted language. Looking
instead at the standard deviation, Open62541 is characterized
by a non negligible values, which reflects on a considerable
jitter of the service time, whereas both FreeOPC UA C++ and
FreeOPC UA Python are definitely more stable.

The activation of the CPU isolation leads to appreciable
benefits. All the three implementations exhibit a decreased
average service time, which is more evident in relative terms
for the FreeOPC UA Python implementation. Conversely, the
impact on the standard deviation is rather limited, although
in relative terms the FreeOPC UA C++ implementation is the
one which mostly benefits from the CPU isolation.

TABLE III
Statistics of the service time for the Generic OS set-up

Service time Ts [µs]
Whitout CPU

isolation
With CPU
isolation

Mean Std Mean Std

Open62541 312.83 12.56 306.67 12.76
FreeOPC UA C++ 377.30 4.54 374.74 3.32
FreeOPC UA Python 736.79 7.44 711.27 6.52

In general, regardless of the type of operating system used,
the fact that the activation of the cpu isolation has had effects
only on Open62541 and FreeOPC UA Python is an indirect
proof of the measurements proposed in Table II. In particular,
both have a non-zero number of CPU migrations, which
implies that during the execution of the communication task
the allocation of the process has been moved from a core to
another, even multiple time. The involved operations to enable
core migration cause a slight increase of the execution time.
When the process is forced to run in the isolated CPU, migra-
tions are no longer allowed, which explains the improvement
in execution time. The effect is particularly visible with Python
as on average it has a greater number of migrations.

C. Real-time OS
In the following set of outcomes we enabled the real–time

kernel extensions. The EPDF of the service time and the most
relevant statistics of the experiments are reported in Figure 4
and Table IV, respectively.

As a first observation it may be stated that, in general, the
measured RTT values are slightly higher compared with the
general purpose operating system for both the cases of the
CPU isolated and non isolated.

From the results, it appears evident that only the Open62541
implementation obtained considerable benefits from the intro-
duction of the real–time operating system. Indeed, the EPDF
has a more compact shape resulting in a low jitter of the
service time. Also, the isolation of the CPU brings a further
improvement. Conversely, for both the FreeOPC UA C++ and
FreeOPC UA Python implementations, the EPDFs behavior
reveals a worsening with respect to the case of the generic
operating system.

Although the outcomes of this set of measurements may
seems counterintuitive, they allow to draw some useful con-



siderations about the general impact of the linux real–time
extensions on latency. Indeed, as can be seen from Table I,
all the considered implementations of the OPC UA protocol
stack make extensive use of the kernel functions, especially
those concerning network connectivity. Nonetheless, the real-
time patch makes some parts of the kernel preemptible, thus
leaving up more space for executing instructions in the user
space. Also, as shown in [15], the application of the patch
has negative effects on the throughput of the communication
interface. For these reasons in the applications there is a
worsening of the performance with the use of the real-time
operating system.
It is worth highlighting that these observations may not

be valid in devices without an operating system or in which
there is no separation between Kernel and User Space (such as
with FreeRTOS embedded systems). In these cases, it can be
assumed that the system resources are allocated exclusively to
the tasks with highest priority in that specific instant, leading
to an increase in the performance of the communication task.
However, tests on this type of systems are left for future work.

D. Power consumption
One of the main issues concerned with battery powered and

possibly mobile devices is the autonomy. Indeed, such devices
have to ensure a good level of performance for a given amount
of time. To meet these requirements, modern processors are
capable of Dynamic Voltage and Frequency Scaling (DVFS)
to minimize energy consumption and, consequently, extend
battery lifetime [16]. In the Raspberry PI boards used in the
experimental set–up, the DVFS functionality is driven by a
default kernel governor, called ondemand, that dynamically
adjusts the CPU frequency in agreement with the workload
variation. Specifically, if the workload exceeds a predefined
threshold for a certain amount of time, then the governor
increases the CPU operating frequency to its maximum value.
Conversely, if the workload is below the threshold, the oper-
ating frequency is switched to the lowest feasible one [17].
It is clear that such an approach may represent an optimal

trade-off between performance and power consumption in a
generic processing system. However, it may also introduce
a certain latency that impacts on the system responsiveness.
Moreover, frequent, sudden and unforeseen frequency switches
may also impair the accuracy of time readings from the
processor timestamp counter. The aforementioned reasons are
at the basis of the choice to disable the CPU frequency

TABLE IV
Statistics of the service time for the Real–Time OS setup

Service time Ts [µs]
Whitout CPU

isolation
With CPU
isolation

Mean Std Mean Std

Open62541 382.48 24.44 368.78 10.13
FreeOPC UA C++ 467.59 15.01 457.60 11.32
FreeOPC UA Python 778.43 20.63 735.84 9.69
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Fig. 4. EPDF of the service time for the configuration with the Real–time
OS. Blue line: configuration without CPU isolation. Red line: configuration
with CPU isolation enabled, and where both server and client are forced to
run on the isolated CPU.

governor during all the measurement sessions discussed so
far, with the aim of minimizing the external factors that may
affect the accuracy of the measurements.

Nevertheless, the power consumption of the adopted de-
vices is a metric of definite interest in an IIoT scenario.
Consequently, we carried out a preliminary analysis of the
impact of the governor on both the power consumption and
the performance of the developed OPC UA based distributed
measurement system developed for the experiments. The tests
have been performed using only the Open62541 stack, with
the generic operating system and without CPU isolation. We
measured the current consumption on the client side.

The experimental set-up for the current measurement is
reported in Figure 5. The Raspberry Pi has been powered
with a stabilized power supply, providing a 5 V continuous
voltage. The current has been measured using a Hall effect
sensor whose sensitivity is 66 mV/A. Current measurements
have been acquired using an external digital acquisition system
equipped with a 12 bit ADC with an input range of [0, 3.3]V
at a sampling rate of 1 Hz. Each time the communication task
is started, the Raspberry Pi rises a signal triggering a new
acquisition of the current level, which is also timestamped for



further analysis.
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Fig. 5. Block diagram of the current measurement setup.

TABLE V
Statistics of the current consumption with CPU governor disabled

and enabled

Current [A]
Mean Std

Governor Disabled 0.4862 0.0379
Governor Enabled 0.4838 0.0358
Percentage Change 0.49% 5.86%

The results of this new set of experiments are summarized in
Table V, which reports the statistics of the power consumption
for the two cases in which the governor was, respectively,
enabled and disabled. Looking at Table V, it can be seen that
the difference in current current consumption with both the
configuration of the governor is negligible. This is mostly due
to the low CPU resources used by Open62541 (see Table I for
reference) which, although the CPU frequency is at maximum
value, are not sufficient to imply an appreciable variation in
current consumption.

V. Conclusion and Future works

In this paper we proposed the usage of OPC UA as com-
munication interface for distributed measurement systems. In
particular we focused on analysis of a communication task
in term of service time of three open source implementation
of the stack with different configuration of operating systems
and isolated CPUs. Generally speaking, we observed that
using a Real-Time operating system lead to an increase of
the service time. This is most likely due to the preemption
of part of the kernel and consequently implies the reduction
of the network communication port throughput. On the other
hand, the allocation of the stack instance on an isolated CPU
allow to obtain a significant reduction of the jitter. Based
on these observation, is clear that the use of an Real-Time
operating system does not bring any advantage and in general
the best performances are achieved with a generic operating
system with an isolated CPU. In particular, it has been shown
that Open62541 is the most efficient among the examined
implementations.
The proposed application of OPC UA can also be extended

to wireless battery powered measurement systems. For this
reason we gave an insights on the power consumption of one
of the experimental setups for different configuration of the
CPU governor. It has been show that, due to the relatively

low demand of CPU resources required by the Open62541
implementation, the configuration of the CPU governor has
almost no impact of the power consumption. Anyway, a more
extensive experimental campaign focused on mobile battery
powered measurement system as well as on the performances
of the communication task over wireless link, will be object
of future works.

In addition, since the proposed experimental setup seems
to be overkill for small integrated sensors, we plan to test the
framework on low power embedded devices as, for example,
microcontroller with no operating system or with real time OS
such as FreeRTOS.
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